2022
Jin, Yi; Behrens, Paul; Tukker, Arnold; Scherer, Laura
Biodiversity Loss from Freshwater Use for China's Electricity Generation Journal Article
In: Environmental Science & Technology, 2022, ISSN: 0013-936X.
Abstract | Links | BibTeX | Tags: biodiversity impacts, power generation, Power transmission, thermal emissions, water consumption
@article{Jin2022a,
title = {Biodiversity Loss from Freshwater Use for China's Electricity Generation},
author = {Yi Jin and Paul Behrens and Arnold Tukker and Laura Scherer},
doi = {10.1021/acs.est.1c07155},
issn = {0013-936X},
year = {2022},
date = {2022-01-01},
journal = {Environmental Science & Technology},
abstract = {Electricity generation has two major, under-investigated impacts on freshwater biodiversity due to its water use: the consumption of freshwater and thermal emissions to freshwater. Here, we analyze the spatiotemporal freshwater biodiversity impacts of China's electric power system and the driving factors for these impacts. We show that between 2008 and 2017, the freshwater consumption of electricity generation peaked in 2013 (13.6 Gm3). Meanwhile, the freshwater consumption factor of China's electricity generation decreased from 3.2 to 2.0 L/kWh. However, due to increasing thermal emissions, the biodiversity loss via freshwater use increased from 1.1 × 108 in 2008 to 1.6 × 108 PDF m3 year. The overall biodiversity loss per unit of electricity generation decreased from 3.2 × 10-5 to 2.5 × 10-5 PDF m3 year/kWh. Biodiversity loss from thermal pollution is 60% higher than that driven by water consumption. Electricity transmission results in the shifting of biodiversity impacts across regions. The results show that 15% of total biodiversity loss was embedded in transmission networks. In terms of electrical power system drivers of biodiversity loss, the total generation was the main driving factor of the increase in loss (rather than shifts in generation type, for example). Our results indicate the necessity of assessing the biodiversity impacts of electricity generation and incorporating them into energy system planning.},
keywords = {biodiversity impacts, power generation, Power transmission, thermal emissions, water consumption},
pubstate = {published},
tppubtype = {article}
}
2021
Zhong, Xiaoyang; Hu, Mingming; Deetman, Sebastiaan; Steubing, Bernhard; Lin, Hai Xiang; Hernandez, Glenn Aguilar; Harpprecht, Carina; Zhang, Chunbo; Tukker, Arnold; Behrens, Paul
Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060 Journal Article
In: Nature Communications, vol. 12, no. 1, pp. 1–10, 2021, ISSN: 20411723.
Abstract | Links | BibTeX | Tags: Acoustic measurements, adaptation measure, Animal husbandry, Beach sampling, Beach sediment, beach sediment citizen science, Benefits, biodiversity impacts, biodiversity loss, Black carbon, capital investment, Carbon emissions, Caribbean, China, china-us trade conflicts, circular economy, Citizen science, climate change, CO2 emissions, CO2emissions, Community, Complex terrain, Concentrated solar power, Consultation, Consumption structure, countryside species-area relationship, Cress (Lepidium sativum), Decomposition analysis, Decoupling analysis, Desulfurization technologies, Economic and social impacts, Electricity generation, Electricity sector, Electricity system, Emission projections, energy footprint, Energy models, Energy scenarios, Energy systems, Energy technology, Energy transition, energy use, energy water nexus, Energy-water nexus, Environmental, Environmental impact, environmental inequality, Environmental Justice, Environmentally extended multiregional input-outpu, EU countries, Europe, Exposure concentration, Extraction, Feed-in tariffs, Feedback and spillover effects, Flow curvature, food system, Historical drivers, Household carbon emissions, Household GHG footprints, human development, Hybrid input-output analysis, Hydraulic unbalanced forces, hydro-turbine governing system, Hydroelectric generating systems, Income inequality, Industrial CO2 emissions, industrial ecology, Input-output analysis, input–output analysis, international trade, Investment, Investment and opportunity costs, Land, Land degradation, land-use intensity, Learning curve, Lesser Antilles, Lidar observations, Lidars, Life cycle assessment, Low-carbon electricity technology, Material footprint, Mathematical model, Method standardization, Microplastics, Mineral resources, Mining, Modal interactions, MRIO model, Multi-regional input-output (MRIO) analysis, Multi-Regional Input-Output Analysis, Multi-regional input-output model, multiregional input-output analysis, Nano- and micron-sized plastics, Non-fossil electricity, Operational, Perceptions, Plastic pollution, Policy goals, Poverty, Power density, power generation, Power plants, Power transmission, Primary crops, Public transit, Rebound, Remote sensing, renewable energy policy, resource efficiency, Responsibility Sharing, Sectoral analysis, Sharing economy, SO2 emission reduction, Socio-economic impact, Sodar, Solar energy, Spatial decomposition analysis, Spatial impact, Spatially explicit, Standard operating procedure, Sublethal impacts, Subnational, Subsystem input-output model, Sustainable consumption, techno-economic evaluation, Terrestrial systems, thermal emissions, Urban-rural differences, Urbanization, Vascular plant, Vulnerable passengers, water basin, water consumption, Water footprint, Water scarcity, Wind, Wind energy
@article{Zhong2021ab,
title = {Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060},
author = {Xiaoyang Zhong and Mingming Hu and Sebastiaan Deetman and Bernhard Steubing and Hai Xiang Lin and Glenn Aguilar Hernandez and Carina Harpprecht and Chunbo Zhang and Arnold Tukker and Paul Behrens},
url = {https://doi.org/10.1016/j.rser.2022.112677 https://doi.org/10.1016/j.energy.2022.123339 https://doi.org/10.1016/j.oneear.2021.12.011 https://doi.org/10.1016/j.ecolecon.2022.107339 https://doi.org/10.1016/j.jclepro.2021.127098 https://doi.org/10.1016/j.sci},
doi = {10.1038/s41467-021-26212-z},
issn = {20411723},
year = {2021},
date = {2021-07-01},
journal = {Nature Communications},
volume = {12},
number = {1},
pages = {1–10},
publisher = {Elsevier Ltd},
address = {Copenhangen},
edition = {1},
abstract = {Building stock growth around the world drives extensive material consumption and environmental impacts. Future impacts will be dependent on the level and rate of socioeconomic development, along with material use and supply strategies. Here we evaluate material-related greenhouse gas (GHG) emissions for residential and commercial buildings along with their reduction potentials in 26 global regions by 2060. For a middle-of-the-road baseline scenario, building material-related emissions see an increase of 3.5 to 4.6 Gt CO2eq yr-1 between 2020–2060. Low- and lower-middle-income regions see rapid emission increase from 750 Mt (22% globally) in 2020 and 2.4 Gt (51%) in 2060, while higher-income regions shrink in both absolute and relative terms. Implementing several material efficiency strategies together in a High Efficiency (HE) scenario could almost half the baseline emissions. Yet, even in this scenario, the building material sector would require double its current proportional share of emissions to meet a 1.5 °C-compatible target.},
keywords = {Acoustic measurements, adaptation measure, Animal husbandry, Beach sampling, Beach sediment, beach sediment citizen science, Benefits, biodiversity impacts, biodiversity loss, Black carbon, capital investment, Carbon emissions, Caribbean, China, china-us trade conflicts, circular economy, Citizen science, climate change, CO2 emissions, CO2emissions, Community, Complex terrain, Concentrated solar power, Consultation, Consumption structure, countryside species-area relationship, Cress (Lepidium sativum), Decomposition analysis, Decoupling analysis, Desulfurization technologies, Economic and social impacts, Electricity generation, Electricity sector, Electricity system, Emission projections, energy footprint, Energy models, Energy scenarios, Energy systems, Energy technology, Energy transition, energy use, energy water nexus, Energy-water nexus, Environmental, Environmental impact, environmental inequality, Environmental Justice, Environmentally extended multiregional input-outpu, EU countries, Europe, Exposure concentration, Extraction, Feed-in tariffs, Feedback and spillover effects, Flow curvature, food system, Historical drivers, Household carbon emissions, Household GHG footprints, human development, Hybrid input-output analysis, Hydraulic unbalanced forces, hydro-turbine governing system, Hydroelectric generating systems, Income inequality, Industrial CO2 emissions, industrial ecology, Input-output analysis, input–output analysis, international trade, Investment, Investment and opportunity costs, Land, Land degradation, land-use intensity, Learning curve, Lesser Antilles, Lidar observations, Lidars, Life cycle assessment, Low-carbon electricity technology, Material footprint, Mathematical model, Method standardization, Microplastics, Mineral resources, Mining, Modal interactions, MRIO model, Multi-regional input-output (MRIO) analysis, Multi-Regional Input-Output Analysis, Multi-regional input-output model, multiregional input-output analysis, Nano- and micron-sized plastics, Non-fossil electricity, Operational, Perceptions, Plastic pollution, Policy goals, Poverty, Power density, power generation, Power plants, Power transmission, Primary crops, Public transit, Rebound, Remote sensing, renewable energy policy, resource efficiency, Responsibility Sharing, Sectoral analysis, Sharing economy, SO2 emission reduction, Socio-economic impact, Sodar, Solar energy, Spatial decomposition analysis, Spatial impact, Spatially explicit, Standard operating procedure, Sublethal impacts, Subnational, Subsystem input-output model, Sustainable consumption, techno-economic evaluation, Terrestrial systems, thermal emissions, Urban-rural differences, Urbanization, Vascular plant, Vulnerable passengers, water basin, water consumption, Water footprint, Water scarcity, Wind, Wind energy},
pubstate = {published},
tppubtype = {article}
}
Jin, Yi; Behrens, Paul; Tukker, Arnold; Scherer, Laura
The energy-water nexus of China ' s interprovincial and seasonal electric power transmission Journal Article
In: Applied Energy, vol. 286, no. January, pp. 116493, 2021, ISSN: 0306-2619.
Links | BibTeX | Tags: Electricity system, Power plants, Power transmission
@article{Jin2021,
title = {The energy-water nexus of China ' s interprovincial and seasonal electric power transmission},
author = {Yi Jin and Paul Behrens and Arnold Tukker and Laura Scherer},
url = {https://doi.org/10.1016/j.apenergy.2021.116493},
doi = {10.1016/j.apenergy.2021.116493},
issn = {0306-2619},
year = {2021},
date = {2021-01-01},
journal = {Applied Energy},
volume = {286},
number = {January},
pages = {116493},
publisher = {Elsevier Ltd},
keywords = {Electricity system, Power plants, Power transmission},
pubstate = {published},
tppubtype = {article}
}